Ornithine Decarboxylase Antizyme Induces Hypomethylation of Genome DNA and Histone H3 Lysine 9 Dimethylation (H3K9me2) in Human Oral Cancer Cell Line

نویسندگان

  • Daisuke Yamamoto
  • Kaori Shima
  • Kou Matsuo
  • Takashi Nishioka
  • Chang Yan Chen
  • Guo-fu Hu
  • Akira Sasaki
  • Takanori Tsuji
چکیده

BACKGROUND Methylation of CpG islands of genome DNA and lysine residues of histone H3 and H4 tails regulates gene transcription. Inhibition of polyamine synthesis by ornithine decarboxylase antizyme-1 (OAZ) in human oral cancer cell line resulted in accumulation of decarboxylated S-adenosylmethionine (dcSAM), which acts as a competitive inhibitor of methylation reactions. We anticipated that accumulation of dcSAM impaired methylation reactions and resulted in hypomethylation of genome DNA and histone tails. METHODOLOGY/PRINCIPAL FINDINGS Global methylation state of genome DNA and lysine residues of histone H3 and H4 tails were assayed by Methylation by Isoschizomers (MIAMI) method and western blotting, respectively, in the presence or absence of OAZ expression. Ectopic expression of OAZ mediated hypomethylation of CpG islands of genome DNA and histone H3 lysine 9 dimethylation (H3K9me2). Protein level of DNA methyltransferase 3B (DNMT3B) and histone H3K9me specific methyltransferase G9a were down-regulated in OAZ transfectant. CONCLUSIONS/SIGNIFICANCE OAZ induced hypomethylation of CpG islands of global genome DNA and H3K9me2 by down-regulating DNMT3B and G9a protein level. Hypomethylation of CpG islands of genome DNA and histone H3K9me2 is a potent mechanism of induction of the genes related to tumor suppression and DNA double strand break repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: DNA Topoisomerase 1α Promotes Transcriptional Silencing of Transposable Elements through DNA Methylation and Histone Lysine 9 Dimethylation in Arabidopsis

RNA-directed DNA methylation (RdDM) and histone H3 lysine 9 dimethylation (H3K9me2) are related transcriptional silencing mechanisms that target transposable elements (TEs) and repeats to maintain genome stability in plants. RdDM is mediated by small and long noncoding RNAs produced by the plant-specific RNA polymerases Pol IV and Pol V, respectively. Through a chemical genetics screen with a l...

متن کامل

Distinct regulation of histone H3 methylation at lysines 27 and 9 by CpG methylation in Arabidopsis.

Transcriptional activity and structure of chromatin are correlated with patterns of covalent DNA and histone modification. Previous studies have revealed that high levels of histone H3 dimethylation at lysine 9 (H3K9me2), characteristic of transcriptionally silent heterochromatin in Arabidopsis, require hypermethylation of DNA at CpG sites. Here, we report that CpG hypermethylation characterist...

متن کامل

Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state.

Histone H3 lysine 9 (H3K9) and lysine 27 (H3K27) trimethylation are properties of stably silenced heterochromatin whereas H3K9 dimethylation (H3K9me2) is important for euchromatic gene repression. In colorectal cancer cells, all of these marks, as well as the key enzymes which establish them, surround the hMLH1 promoter when it is DNA hypermethylated and aberrantly silenced, but are absent when...

متن کامل

Alteration of histone H3 lysine 9 dimethylation in peripheral white blood cells of septic patients with trauma and cancer

The present study aimed to investigate the clinical significance of histone methylation in sepsis. A total of 43 blood samples from trauma and esophageal cancer patients with or without sepsis were collected. Immunofluorescence staining of isolated peripheral white blood cells (WBCs) was conducted. Co‑stained 293T cells served as a reference, to allow the levels of histone methylation in differ...

متن کامل

DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns.

The stability of epigenetic patterns is critical for genome integrity and gene expression. This highly coordinated process involves interrelated positive and negative regulators that impact distinct epigenetic marks, including DNA methylation and dimethylation at histone H3 lysine 9 (H3K9me2). In Arabidopsis, mutations in the DNA methyltransferase MET1, which maintains CG methylation, result in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010